Neurocircuit Wiring and Function
Die zunehmende Belastung durch Adipositas und Diabetes mellitus Typ 2 macht es notwendig, die genauen Mechanismen zu erforschen, die grundlegende Verhaltens- und physiologische Prozesse wie die Nahrungsaufnahme oder die Aufrechterhaltung eines konstanten Körpergewichts und Blutzuckerspiegels steuern. Um dieser Herausforderung gerecht zu werden, ist unsere Gruppe bestrebt, unser Verständnis der grundlegenden Prinzipien der zentralen Kontrolle des Stoffwechsels vom Embryo bis zum Erwachsenen zu vertiefen.
Unser allgemeines Interesse besteht darin, die genauen neuronalen Netzwerke zu entschlüsseln, die die Energie- und Glukosehomöostase kontrollieren, indem wir ihre genauen Funktionen und ihre entwicklungsabhängige Vernetzung aufdecken.
Die in unserer Gruppe durchgeführten Projekte zielen letztendlich darauf ab, unser Verständnis der Pathophysiologie von Adipositas und Typ-2-Diabetes mellitus zu verbessern und neue Erkenntnisse über Interventionsansätze zur Bekämpfung dieser Stoffwechselerkrankungen zu gewinnen.
Research interests
Defining the exact neurocircuits controlling energy and glucose homeostasis
We seek at further defining the architecture and the functional principles of neuronal-based circuits controlling energy and glucose homeostasis in adults. By doing so, we hope to better delineate how the brain controls metabolic processes and to identify the exact neurocircuits involved in these events. Our projects notably intend to understand how the organism senses and integrates its environment and adapt its behavior according to its physiological and nutritional needs. To answer these fundamental questions, we are employing state-of-the-art technologies in systems neuroscience such as optogenetics, chemogenetics, and in vivo calcium imaging in concert with a broad range of tests assessing metabolism and behavior.
Studying the developmental programming of obesity and metabolic diseases
Metabolic disorders are increasingly diagnosed in childhood and have recognized roots in very early life. Indeed, compelling evidence from animals and epidemiological studies reveal that abnormal changes in the maternal, fetal, and neonatal environment substantially contribute to the onset of these metabolic diseases. Notably, changes in the nutritional and/or hormonal environment during gestation and/or lactation (e.g. maternal obesity/malnutrition or diabetes) can permanently alter the development of “brain-metabolic” pathways. Those alterations will in turn lead to life-long changes in homeostatic functions and predisposes individuals to develop metabolic diseases later in life.
We are focusing on uncovering new mechanisms underlying the developmental programming of metabolic neuronal networks. Altogether, we intend to pinpoint novel brain-metabolic pathways sensitive to abnormal perinatal milieus that could ultimately contribute to the onset of metabolic dysfunctions.