Seminars and events

at the Max Planck Institute for Metabolism Research and at cooperating institutes

Giuseppe D'Agostino, PhD

Talk by Giuseppe D'Agostino, PhD

Neuronal Circuits Controlling Energy Metabolism Beyond Appetite Regulation
  • Date: Nov 14, 2025
  • Time: 10:00 AM - 11:00 AM (Local Time Germany)
  • Speaker: Giuseppe D'Agostino, PhD
  • Giuseppe (Peppe) D'Agostino is a Group Leader at the University of Manchester, Division of Diabetes, Endocrinology and Gastroenterology, and he is a member of the Lydia Becker Institute of Immunology and Inflammation and the Geoffrey Jefferson Brain Research Centre. A pharmacologist by training, Peppe earned his PhD in Neuropharmacology from the University of Naples, Italy, and pursued further research training at Yale University (USA), the University of Cambridge, and the University of Aberdeen. In 2017, he was awarded a Medical Research Council fellowship to establish his independent research group. In 2019, his laboratory relocated to the University of Manchester In 2019, where in 2023 became Senior Lecturer (Associate Professor). His group focuses on neuronal circuits that control appetite and fuel metabolism under both homeostatic and pathological conditions, employing genetics, systems neuroscience, and integrative physiology approaches.
  • Location: MPI for Metabolism Research, Gleueler Strasse 50, 50931 Köln
  • Room: Seminar room 1
  • Host: Prof. Jens Brüning
  • Topic: Discussion and debate formats, lectures
  • Contact: klingenberg@sf.mpg.de
Brain circuits that sense energy do far more than drive appetite. This talk explores how hypothalamic and brainstem networks orchestrate whole-body metabolism, managing a critical trade-off between immune readiness and energy conservation. This highlights an emerging framework of how the brain dynamically matches whole-body physiology to its perceived energy status and prioritizes tissue maintenance under changing nutritional states. [more]
Wissenschaftliche Wasserfarbe-Skizzen auf weißen Hintergrund. Titel und Ort der Eventreihe auf violetten und beigen Streifen.

Biomedical Seminars Cologne "Organizing a compartment by redox - the mitochondrial intermembrane space"

Wissenschaftliche Wasserfarbe-Skizzen auf weißen Hintergrund. Titel und Ort der Eventreihe auf violetten und beigen Streifen.

Biomedical Seminars Cologne "Setting the Clock: How Intergenerational and Early Life Injury Shapes Lung Aging and Disease"

Garron Dodd, PhD

Talk by Garron Dodd, PhD, University of Melbourne, Australia

Unlocking Brain Pathways to Treat Metabolic Disease
Metabolic diseases such as obesity and type-2 diabetes (T2D) are among the most pressing health challenges of our time. Affecting over one-third of the world’s population, they are projected to become the leading cause of mortality by 2030. Discovering effective treatments is a global health priority.While long regarded as disorders of peripheral organs, mounting evidence reveals that the brain plays a central role in their development and progression. This seminar will explore how neural circuits regulate energy balance, glucose homeostasis, and insulin sensitivity, highlighting the dynamic two-way communication between the brain and peripheral tissues.Drawing on recent discoveries from AProf Dodd’s laboratory, we will examine how specific brain pathways act as potential therapeutic targets. By understanding and harnessing these mechanisms, new opportunities emerge to design treatments that more effectively combat obesity and T2D. [more]

Talk by Michael J. Krashes, National Institutes of Health, Bethesda, USA

A hypothalamic circuit that modulates feeding and parenting behaviours
Across mammalian species, new mothers undergo behavioural changes to nurture their offspring and meet the caloric demands of milk production. Although many neural circuits underlying feeding and parenting behaviours are well characterized, it is unclear how these different circuits interact and adapt during lactation. Here we performed transcriptomic profiling of the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger. Furthermore, we showed that heightened appetite in lactating mice was accompanied by increased activity of hunger-promoting agouti-related peptide (AgRP) neurons in the ARC (ARCAgRP neurons). To assess the strength of hunger versus maternal drives, we designed a conflict assay in which female mice chose between a food source or pups and nesting material. Although food-deprived lactating mothers prioritized parenting over feeding, hunger reduced the duration and disrupted the sequences of parenting behaviours in both lactating and virgin females. We found that ARCAgRP neurons inhibit bombesin receptor subtype 3 (BRS3) neurons in the MPOA (MPOABRS3 neurons), which become more active postpartum and govern parenting and satiety. Activation of this ARCAgRP-to-MPOABRS3 circuit shifted behaviours from parenting to food-seeking. Thus, hypothalamic networks are modulated by physiological states and work antagonistically during the prioritization of competing motivated behaviours. [more]

Talk by Ruth Li, PhD, University of Tsukuba, Japan

The SCN-DMH neural pathway regulates circadian output from the central clock
Most organisms exhibit circadian rhythms—approximately 24-hour cycles of physiological fluctuations—governed by a “central clock.” In mammals, this central clock resides in the hypothalamic suprachiasmatic nucleus (SCN). The SCN functions as an autonomous oscillator, generating near-24-hour rhythms through cellular transcription–translation feedback loops (TTFLs) and neuronal connections within the SCN. However, the neural outputs of the SCN and their role in driving circadian rhythms have long remained poorly understood. One of the many regions receiving projections from the SCN is the dorsomedial hypothalamic nucleus (DMH), which is critical for homeostatic regulation of body temperature, feeding, and metabolism. Our group investigates the role of the neural circuitry connecting the SCN and DMH in the regulation of behavioral and metabolic rhythms, and I will be presenting our latest findings on this topic. [more]
Show more
Go to Editor View